96 research outputs found

    Protection strategies for next generation passive optical networks -2

    Get PDF
    Next Generation Passive Optical Networks-2 (NGPON2) are being considered to upgrade the current PON technology to meet the ever increasing bandwidth requirements of the end users while optimizing the network operators' investment. Reliability performance of NG-PON2 is very important due to the extended reach and, consequently, large number of served customers per PON segment. On the other hand, the use of more complex and hence more failure prone components than in the current PON systems may degrade reliability performance of the network. Thus designing reliable NG-PON2 architectures is of a paramount importance. Moreover, for appropriately evaluating network reliability performance, new models are required. For example, the commonly used reliability parameter, i.e., connection availability, defined as the percentage of time for which a connection remains operable, doesn't reflect the network wide reliability performance. The network operators are often more concerned about a single failure affecting a large number of customers than many uncorrelated failures disconnecting fewer customers while leading to the same average failure time. With this view, we introduce a new parameter for reliability performance evaluation, referred to as the failure impact. In this paper, we propose several reliable architectures for two important NGPON2 candidates: wavelength division multiplexed (WDM) PON and time and wavelength division multiplexed (TWDM) PON. Furthermore, we evaluate protection coverage, availability, failure impact and cost of the proposed schemes in order to identify the most efficient protection architecture

    Enabling Technologies for Optical Data Center Networks: Spatial Division Multiplexing

    Get PDF
    With the continuously growing popularity of cloud services, the traffic volume inside the\ua0data\ua0centers is dramatically increasing. As a result, a scalable and efficient infrastructure\ua0for\ua0data\ua0center\ua0networks\ua0(DCNs) is required. The current\ua0optical\ua0DCNs using either individual fibers or fiber ribbons are costly, bulky, hard to manage, and not scalable.\ua0Spatial\ua0division\ua0multiplexing\ua0(SDM) based on multicore or multimode (few-mode) fibers is recognized as a promising technology to increase the\ua0spatial\ua0efficiency\ua0for\ua0optical\ua0DCNs, which opens a new way towards high capacity and scalability. This tutorial provides an overview of the components, transmission options, and interconnect architectures\ua0for\ua0SDM-based DCNs, as well as potential technical challenges and future directions. It also covers the co-existence of SDM and other\ua0multiplexing\ua0techniques, such as wavelength-division\ua0multiplexing\ua0and flexible spectrum\ua0multiplexing, in\ua0optical\ua0DCNs

    Space-Division Multiplexing in Data Center Networks: On Multi-Core Fiber Solutions and Crosstalk-Suppressed Resource Allocation

    Get PDF
    The rapid growth of traffic inside data centers caused by the increasing adoption of cloud services necessitates a scalable and cost-efficient networking infrastructure. Space-division multiplexing (SDM) is considered as a promising solution to overcome the optical network capacity crunch and support cost-effective network capacity scaling. Multi-core fiber (MCF) is regarded as the most feasible and efficient way to realize SDM networks, and its deployment inside data centers seems very likely as the issue of inter-core crosstalk (XT) is not severe over short link spans (<1  km ) compared to that in long-haul transmission. However, XT can still have a considerable effect in MCF over short distances, which can limit the transmission reach and in turn the data center’s size. XT can be further reduced by bi-directional transmission of optical signals in adjacent MCF cores. This paper evaluates the benefits of MCF-based SDM solutions in terms of maximizing the capacity and spatial efficiency of data center networks. To this end, we present an analytical model for XT in bi-directional normal step-index and trench-assisted MCFs and propose corresponding XT-aware core prioritization schemes. We further develop XT-aware spectrum resource allocation strategies aimed at relieving the complexity of online XT computation. These strategies divide the available spectrum into disjoint bands and incrementally add them to the pool of accessible resources based on the network conditions. Several combinations of core mapping and spectrum resource allocation algorithms are investigated for eight types of homogeneous MCFs comprising 7–61 cores, three different multiplexing schemes, and three data center network topologies with two traffic scenarios. Extensive simulation results show that combining bi-directional transmission in dense core fibers with tailored resource allocation schemes significantly increases the network capacity. Moreover, a multiplexing scheme that combines SDM and WDM can achieve up to 33 times higher link spatial efficiency and up to 300 times greater capacity compared to a WDM solution

    Geographic model for cost estimation of FTTH deployment: overcoming inaccuracy in uneven-populated areas

    Get PDF
    A geographic approach is proposed to accurately estimate the cost of FTTH networks. In contrast to the existing geometric models, our model can efficiently avoid inaccurate estimation of the fibre infrastructure cost in the uneven-populated areas

    Geometric versus geographic models for the estimation of an FTTH deployment

    Get PDF
    Optical access networks provide a future proof platform for a wide range of services, and today, several operators are deploying fibre to the home (FTTH) networks. Installing an FTTH infrastructure, however, involves very high investment cost. Therefore, a good estimation of the investment cost is important for building a successful business strategy and, consequently, to speed up the FTTH penetration. In this paper, for calculating the amount of cable and fibre in the outside plant together with the associated civil works, and the number of required network elements, two different approaches are investigated: (1) geometric modelling of the fibre plant based on approximate mathematical models and (2) geographic modelling of the fibre plant based on map-based geospatial data. The results obtained from these two approaches can then be used as input for preliminary investment cost calculations and/or techno-economic evaluations. Compared to more complex and accurate geographic modelling, we verify that especially with uneven population density and irregular street system, simple geometric models do not provide accurate results. However, if no geospatial data is available or a fast calculation is desired for a first estimation, geometric models definitely have their relevance. Based on the case studies presented in this paper, we propose some important guidelines to improve the accuracy of the geometric models by eliminating their main distortion factors

    Toward reliable hybrid WDM/TDM passive optical networks

    Get PDF
    Individual users and enterprises are increasingly relying on the access to internet services and cannot accept long interruption time as easily as before. Moreover, the main characteristics of next generation optical access (NGOA) networks, such as long reach and a large number of users per feeder line, turn the network reliability to an important design parameter to offer uninterrupted service delivery. In this regard, protection mechanisms become one of the crucial aspects that need to be considered in the design process of access networks. On the other hand, it should be noted that not all users can afford to pay a high extra cost for protection; hence, it is important to provide resilience in a cost-efficient way. A PON combining WDM and TDM technologies, referred to as hybrid WDM/TDM PON or HPON, is one of the most promising candidates for NGOA networks due to its ability to serve a large number of subscribers and offer high capacity per user. For these reasons, in this article, we propose HPON architecture offering different degrees of resilience depending on the user profiles (i.e., partial and full protection for residential and business access, respectively). Also, the investment cost of providing resilience for the proposed schemes is investigated considering various protection upgrade road maps. Our results confirm that protecting the shared part of network with a large number of users is required in order to keep the failure impact at an acceptable level, with less than 5 percent increase of investment cost compared to the unprotected case. Meanwhile, the proposed end-to-end protection for business users considerably reduces the risk of service interruption for this type of demanding user without a need to duplicate the deployment cost of an unprotected connection. Furthermore, a sensitivity analysis is performed to investigate the impact of changes in business user percentage and protection upgrade time on the deployment cost. The results may be used as advice on cost-efficient deployment of reliable fiber access networks

    Challenges and Requirements for Introducing Impairment-awareness into the Management and Control Planes of ASON/GMPLS WDM Networks

    Get PDF
    The absence of electrical regenerators in transparent WDM networks significantly contributes to reduce the overall network cost. In transparent WDM networks, a proper resource allocation requires that the presence of physical impairments in Routing and Wavelength Assignment (RWA) and lightpath provisioning be taken into account. In this article a centralized, a hybrid centralized-distributed and two distributed approaches that integrate information about most relevant physical impairments in RWA and lightpath provisioning are presented and assessed. Both centralized and hybrid approaches perform a centralized path computation at the management-plane level, utilizing physical impairment information, while the lightpath provisioning is done by the management plane or the control plane, respectively. The distributed approaches fall entirely within the scope of the ASON/GMPLS control plane. For these two approaches, we provide functional requirements, architectural functional blocks, and protocol extensions for implementing either an impairment-aware real-time RWA, or a lighpath provisioning based on impairment-aware signaling
    corecore